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Space groups, order-parameter and strain/order-parameter

coupling relationships in ABX3 perovskite structures which

combine cooperative Jahn–Teller distortions and octahedral

tilting have been investigated from the perspective of group

theory using the computer program ISOTROPY. Two

common Jahn–Teller ordering schemes are associated with

the irreducible representations Mþ2 and Rþ3 of the space group

Pm3m. A third, less-common ordering scheme is associated

with �þ3 . These combine with tilting instabilities associated

with Mþ3 and Rþ4 to generate a predicted suite of Jahn–Teller

structure types that includes many of the known structures of

manganites, vanadates, Cu and Cr halides. Order-parameter

coupling and possible phase transitions are described using

Landau free-energy expansions, and general expressions for

the relationships between symmetry-adapted spontaneous

strains and particular order-parameter components are

presented. These provide a general formal framework for

determining structural evolution across multi-component

order-parameter space and for characterizing the influence

of tilting instabilities on Jahn–Teller instabilities or of Jahn–

Teller ordering on octahedral tilting.
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1. Introduction

A characteristic feature of the wide array of phase transitions

which occur in perovskites as a response to changes in

temperature and pressure is that they can be driven by

multiple instabilities, even in a sample with simple, fixed

stoichiometry. Different combinations of displacive, cation-

ordering and electronic transitions give rise to the familiar

diversity of ferroelastic, ferroelectric, magnetic and electrical

properties which continue to attract intense interest from both

scientific and technological perspectives. Composition can also

be adjusted across multicomponent solid solutions to

substantially increase the phenomenological richness of these

materials as single crystals, powders, ceramics or thin films. An

important subgroup of multiple combinations of phase tran-

sitions in perovskites involves octahedral tilting and coop-

erative Jahn–Teller distortions. Although restricted to phases

containing the relatively small number of cations with uneven

occupation of t2g or, more notably, eg orbitals by d electrons,

including Ti3+, V3+, Cr2+, Mn3+, Fe2+, Co2+, Co3+, Ni3+ and Cu2+

in high-spin states, Fe3+ and Co4+ in low-spin states, and Fe2+,

Fe3+, Co3+ and Co4+ in intermediate spin states, the Jahn–

Teller effect has a special significance because it links changes

in electronic configuration to changes in structural state (e.g.

Goodenough, 1998, 2004; Salamon & Jaime, 2001; Israel et al.,

2007; and many references therein). Since octahedral tilting

and Jahn–Teller distortions influence each other (e.g. Mizo-

kawa et al., 1999), a link necessarily also exists between tilting



transitions and electronic properties. Landau theory and

group-theoretical rules provide a rigorous basis for deter-

mining the form and character of allowed interactions

between different structural instabilities, and the first aim of

the present work was to set out space group and order-para-

meter relationships for different combinations of cooperative

Jahn–Teller distortions with M-point + R-point tilting in ABX3

perovskites. As well as providing a proper basis for rationa-

lizing known structure types and the phase transitions which

occur between them, this approach allows the prediction of

other order-parameter combinations and structure types

which have not yet been observed.

Geometrical aspects of Jahn–Teller distortions, cation

ordering and octahedral tilting have recently been reviewed

by Lufaso & Woodward (2004) and Tamazyan & van Smaalen

(2007). Group–subgroup symmetry relations for some of the

structures have also been considered by Bock & Müller

(2002). The Jahn–Teller distortion of an individual BX6 octa-

hedron is associated with breaking of the degeneracy of the d-

electron orbitals of the B cation, and the form of the distortion

is commonly labelled Q2 or Q3 (Goodenough, 1998, 2004). If

two B—X bonds lengthen and two contract (Q2), the cubic

geometry of a regular octahedron becomes orthorhombic. If

two bonds lengthen (or contract) and the remaining four

contract (or lengthen; Q3) the point symmetry becomes

tetragonal. Ordered arrangements of orbital occupancies are

then manifest as ordered arrangements of distorted octahedra.

Two of the key Jahn–Teller ordering schemes in perovskites

are well understood from structures of KCuF3, which do not

undergo octahedral tilting. Both contain planes of octahedra

within which long and short Cu—F bonds alternate. In the

structure with space group P4/mbm, these planes are stacked

one directly above the other (Fig. 1a). This structure has been

referred to as d-type (Okazaki, 1969a,b; Lufaso & Woodward,

2004) or sometimes as C-type (Sage et al., 2007), by analogy

with the notation used in the description of antiferromagnetic

structures (Wollan & Koehler, 1955). The structure in which

alternate planes are rotated so that the long Cu—F bond in

one plane lies directly above the short bond in the next (Fig.

1b), with the space group I4/mcm, is labelled a-type (Okazaki,

1969a) or G-type (Sage et al., 2007). In both structures, the

distortions of individual octahedra are Q2 according to the

atomic displacements associated with the symmetry change

from the parent cubic form (Pm3m), but the symmetry is also

permissive of Q3. A third possibility has the unique tetragonal

axes of Q3 octahedra all aligned in the same direction. An

example of this structure appears to be the form of

La0.5Ba0.5CoO3 which has disordered cations on the A sites

and a reported space group of P4/mmm (Fauth et al., 2001).

Superposition of octahedral tilting on d- and a-type

ordering schemes gives the well known structures, for

example, of LaMnO3 and related manganites (e.g. Norby et al.,

1995; Huang et al., 1997; Rodrı́guez-Carvajal et al., 1998;

Alonso et al., 2000; Tachibana et al., 2007), YVO3 and related

vanadates (e.g. Bordet et al., 1993; Blake et al., 2001, 2002; Ren

et al., 2003; Sage et al., 2007; Martı́nez-Lope et al., 2008),

LaTiO3 and related titanites (e.g. Mizokawa et al., 1999;

Hemberger et al., 2003; Komarek et al., 2007). Given the large

number of M-point, R-point and M + R point tilt systems,

however (Glazer, 1972; Woodward, 1997a,b; Howard &

Stokes, 1998), there should exist a significant number of

possible mixed tilting + orbitally ordered structures. Not all

combinations will necessarily be allowed by symmetry and

those that are may not be easy to recognize purely by their

lattice geometry, hence the need for the present group-theo-

retical treatment.

An additional theme which permeates attempts to under-

stand the structure and properties of real Jahn–Teller

perovskites, such as the manganites and vanadates, is the

importance of strain (e.g. Millis, 1998; Millis et al. 1998; Uehara

& Cheong, 2000; Ahn & Millis, 2001; Podzorov et al., 2001; Gu

& Ting, 2002; Miyasaka et al., 2003; Sánchez et al., 2003;
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Figure 1
Polyhedral representations of the structural variants of the Jahn–Teller
distorted perovskite KCuF3. (a) Variant with space-group symmetry
P4/mbm, known as d-type or C-type; the distortion is associated with irrep
Mþ2 . (b) Variant with space-group symmetry I4/mcm, known as a-type or
G-type, the irrep here being Rþ3 .



Calderón et al., 2003; Chapman et al.,

2004; Burgy et al., 2004; Ahn et al., 2004,

2005; Goodenough, 2004; Sage et al.,

2007; Zhou et al., 2007; Israel et al., 2007;

Cox et al., 2008; Horsch et al., 2008).

Jahn–Teller distortions of individual

octahedra, ordering and tilting of the

octahedra, magnetic ordering and phase

separation are invariably accompanied

by lattice distortions at a range of length

scales. Changes associated with discrete

phase transitions appear overtly as

changes in lattice parameters, and these

can be described formally in terms of

macroscopic strains. The second objec-

tive of the present study, therefore, was

to analyse strain/order-parameter

coupling for combined Jahn–Teller and

octahedral tilting transitions, following

the approach set out by Carpenter et al.

(1999, 2001, 2005) and Carpenter

(2007).

This paper is the first of two on the

symmetry and coupling behaviour of

perovskites with both octahedral tilting

and Jahn–Teller transitions. Here, a

group-theoretical treatment of coupling

between 15 possible tilt systems and

three Jahn–Teller ordering schemes is

presented in x2. Readers who are not

interested in the derivations might

choose to go directly to the tables which

summarize the space groups, order

parameters and lattice geometry of the

possible structure types which are

predicted. x3 contains a formal treat-

ment of coupling between different

order parameters and macroscopic

strains in the mixed structures, and the

resulting relationships are presented as

a series of equations, based on Landau

theory. These general equations provide

the basis for analysing changes in lattice

parameters of real materials, particu-

larly from high-resolution diffraction

experiments, to determine the evolution

of individual tilting or Jahn–Teller order

parameters and to investigate the

manner in which the separate processes

influence each other. x4 deals with the

permitted thermodynamic character of

phase transitions in mixed systems when

tilting precedes or follows a Jahn–Teller

transition. The behaviour of a few well

known phases is reviewed in the context

of the group-theoretical results. x5 is a

brief introduction to the additional role
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Table 1
Space groups, order-parameter components, tilt systems and unit-cell relationships for ABX3

perovskites containing octahedral tilting related to irreps Mþ3 and/or Rþ4 together with ordered
arrangements of Jahn–Teller distorted octahedra related to irreps �þ3 , Mþ2 or Rþ3 .

The lattice vectors and origins are given for conventional settings of the space groups, in the manner
described by Howard & Stokes (1998). When both JT distortions and octahedral tilting are present, the
same orientations of tilt axes with respect to reference axes X, Y and Z as occur for tilting only have been
preserved. In mixed structures, the different possible orientations of the JT ordering schemes with respect
to the reference axes have been considered, as these can lead to more than one structure type for a given
tilt system.

Space group
Mþ3
q1q2q3

Rþ4
q4q5q6 System Lattice vectors Origin

1 221 Pm�33m (0,0,0) (0,0,0) a0a0a0 (1,0,0)(0,1,0)(0,0,1) (0,0,0)

2 127 P4/mbm (a,0,0) (0,0,0) a0a0c+ (1,1,0)(�11,1,0)(0,0,1) (0,0,0)
3 139 I4/mmm (a,0,a) (0,0,0) a0b+b+ (0,2,0)(0,0,2)(2,0,0) (1

2,
1
2,

3
2)

4 204 Im�33 (a,a,a) (0,0,0) a+a+a+ (2,0,0)(0,2,0)(0,0,2) (1
2,

1
2,

1
2)

5 71 Immm (a,b,c) (0,0,0) a+b+c+ (2,0,0)(0,2,0)(0,0,2) (1
2,

1
2,

1
2)

6 140 I4/mcm (0,0,0) (a,0,0) a0a0c� (1,1,0)(�11,1,0)(0,0,2) (0,0,0)
7 74 Imma (0,0,0) (a,0,a) a0b�b� (0,1,1)(2,0,0)(0,1,�11) (0,0,0)
8 167 R�33c (0,0,0) (a,a,a) a�a�a� (�11,1,0)(0,�11,1)(2,2,2) (0,0,0)
9 12 C2/m (0,0,0) (a,0,b) a0b�c� (0,�22,0)(2,0,0)(0,1,1) (1

2,
1
2,0)

10 15 C2/c (0,0,0) (a,b,a) a�b�b� (2,�11,�11)(0,1,�11)(0,1,1) (1
2,

1
2,0)

11 2 P�11 (0,0,0) (a,b,c) a�b�c� (0,1,1)(1,0,1)(1,1,0) (0,0,0)

12 63 Cmcm (0,0,a) (b,0,0) a0b+c� (2,0,0)(0,0,�22)(0,2,0) (1
2,0,12)

13 62 Pnma (0,a,0) (b,0,b) a+b�b� (0,1,1)(2,0,0)(0,1,�11) (0,0,0)
14 11 P21/m (0,a,0) (b,0,c) a+b�c� (0,�11,1)(2,0,0)(0,1,1) (0,0,0)
15 137 P42/nmc (0,a,a) (b,0,0) a+a+c� (2,0,0)(0,2,0)(0,0,2) (0,0,�11)

�þ3
qtzqoz

16 123 P4/mmm (a,0)† (0,0,0) (0,0,0) a0a0c0‡ (1,0,0)(0,1,0)(0,0,1) (0,0,0)
(17) 47 Pmmm (a,b)§ (0,0,0) (0,0,0) a0b0c0 (1,0,0)(0,1,0)(0,0,1) (0,0,0)

= 2 127 P4/mbm (a,0) (b,0,0) (0,0,0) a0a0c+ (1,1,0)(�11,1,0)(0,0,1) (0,0,0)
= 3 139 I4/mmm (�a/2,�a

ffiffiffi
3
p

/2)} (b,0,b) (0,0,0) a0b+b+ (0,2,0)(0,0,2)(2,0,0) (1
2,

1
2,

3
2)

= 5 71 Immm (a,b) (c,d,e) (0,0,0) a+b+c+ (2,0,0)(0,2,0)(0,0,2) (1
2,

1
2,

1
2)

= 6 140 I4/mcm (a,0) (0,0,0) (b,0,0) a0a0c� (1,1,0)(�11,1,0)(0,0,2) (0,0,0)
= 7 74 Imma (�a/2,�a

ffiffiffi
3
p

/2) (0,0,0) (b,0,b) a0b�b� (0,1,1)(2,0,0)(0,1,�11) (0,0,0)
= 9 12 C2/m (a, �bb) (0,0,0) (c,0,d) a0b�c� (0,�22,0)(2,0,0)(0,1,1) (1

2,
1
2,0)

= 10 15 C2/c (�a/2,�a
ffiffiffi
3
p

/2) (0,0,0) (b,c,b) a�b�b� (2,�11,�11)(0,1,�11)(0,1,1) (1
2,

1
2,0)

= 11 2 P�11 (a,b) (0,0,0) (c,d,e) a�b�c� (0,1,1)(1,0,1)(1,1,0) (0,0,0)

= 12 63 Cmcm (�a/2,a
ffiffiffi
3
p

/2)††
+(b

ffiffiffi
3
p

/2,b/2)
(0,0,c) (d,0,0) a0b+c� (2,0,0)(0,0,�22)(0,2,0) (1

2,0,12)

= 13 62 Pnma (�a/2,�a
ffiffiffi
3
p

/2) (0,b,0) (c,0,c) a+b�b� (0,1,1)(2,0,0)(0,1,�11) (0,0,0)
= 14 11 P21/m (�a/2,�a

ffiffiffi
3
p

/2)
+(�b

ffiffiffi
3
p

/2,b/2)
(0,c,0) (d,0,e) a+b�c� (0,�11,1)(2,0,0)(0,1,1) (0,0,0)

= 15 137 P42/nmc (a,0) (0,b,b) (c,0,0) a+a+c� (2,0,0)(0,2,0)(0,0,2) (0,0,�11)

Mþ2
q1JTq2JTq3JT

18 127 P4/mbm (a,0,0)‡‡ (0,0,0) (0,0,0) a0a0c0 (1,1,0)(�11,1,0)(0,0,1) (1
2;

1
2,0)

(19) 139 I4/mmm (a,a,0) (0,0,0) (0,0,0) a0b0a0 (0,0,2)(2,0,0)(0,2,0) (0,0,1)
(20) 204 Im�33 (a,a,a) (0,0,0) (0,0,0) a0a0a0 (2,0,0)(0,2,0)(0,0,2) (0,0,0)
(21) 71 Immm (a,b,c) (0,0,0) (0,0,0) a0b0c0 (2,0,0)(0,2,0)(0,0,2) (0,0,0)

22 55 Pbam (a,0,0) (b,0,0) (0,0,0) a0a0c+ (1,1,0)(�11,1,0)(0,0,1) (0,0,0)
23 74 Imma (a,0,0) (0,b,0) (0,0,0) a+b0c0 (2,0,0)(0,0,�22)(0,2,0) (0,0,0)
24 87 I4/m (0,a,0)§§ (b,0,b) (0,0,0) a0b+b+ (0,0,�22)(0,2,0)(2,0,0) (1

2,�
1
2,

1
2)

25 12 C2/m (a,0,0) (b,c,d) (0,0,0) a+b+c+ (2,�22,0)(0,0,2)(0,�22,0) (1
2,�

1
2,

1
2)

26 135 P42/mbc (a,0,0) (0,0,0) (b,0,0) a0a0c� (1,1,0)(�11,1,0)(0,0,2) (1
2,

1
2,0)

27 63 Cmcm (a,0,0) (0,0,0) (0,b,0) a�b0c0 (2,0,0)(0,2,0)(0,0,2) (0,0,0)
= 13 62 Pnma (0,a,0) (0,b0,0) (c,0,c)}} a0b�b� (0,1,1)(2,0,0)(0,1,�11) (0,0,0)
28 15 C2/c (a,0,0) (0,0,0) (b,0,c) a0b�c� (0,2,0)(�22,0,0)(0,0,2) (0,0,0)
= 14 11 P21/m (0,a,0) (0,b0,0) (c,0,d)}} a0b�c� (0,�11,1)(2,0,0)(0,1,1) (0,0,0)
29 14 P21/c (0,a,0) (0,b0,0) (c,d,c)}} a�b�b� (2,0,0)(0,1,�11)(0,1,1) (0,0,0)
30 2 P�11 (0,a,0) (0,b0,0) (c,d,e)}} a�b�c� (0,�11,1)(2,0,0)(0,1,1) (0,0,0)



that cation ordering might play. Practical applications of the

formal results from this paper (paper I) are illustrated for

selected vanadate, manganite, aluminate and cobaltate

perovskites in the second paper of the series (paper II,

Carpenter & Howard, 2009).

2. Symmetry rules: permitted Jahn–Teller + tilt systems

Use of the group theory program ISOTROPY (Stokes et al.,

2007) provides a straightforward means of enumerating the

permitted space groups and their non-zero order parameters

for materials which combine Jahn–Teller and tilting distor-

tions. Here the approach of Howard & Stokes (1998, 2004,

2005), Stokes et al. (2002), Howard et al. (2003) and Howard &

Zhang (2004a,b) is followed in using ISOTROPY to consider

all possible couplings of three Jahn–Teller ordering schemes

with 15 R-point and M-point tilt systems in ABX3 perovskites.1

Phase transitions between the different structures can be

understood in terms of symmetry hierarchies, with second-

order character allowed for particular changes of space group.

Table 1 lists the order-parameter

relationships and space groups given

by ISOTROPY for possible structures

which could arise by combining Jahn–

Teller (orbital) ordering instabilities

with octahedral tilting instabilities.

The reference structure, for which all

order parameters are strictly zero, is

the ideal cubic perovskite in the

space group Pm3m, set with the octa-

hedrally coordinated B cation at the

origin. The three ‘pure’ Jahn–Teller

structures, i.e. without any tilting, are

associated with active irreducible

representations (irreps) �þ3 , Mþ2 and

Rþ3 . These are two-, three- and two-

dimensional irreps, respectively, and

the pure JT structures are obtained

for particular choices of the corre-

sponding order parameters. �þ3 with

order parameter (a,0) corresponds to

the structure with the unique direction

of Q3-distorted BX6 octahedra all

pointing in the same direction. Mþ2
(a,0,0) corresponds to the d-type struc-

ture, while Rþ3 (0,a) corresponds to the

a-type structure. The 15 tilt systems

considered here are associated with

active representations Mþ3 , Rþ4 and Mþ3
+ Rþ4 , as set out in Howard & Stokes

(1998). Glazer notation for these tilt

systems is also given in Table 1 under

the heading ‘System’. The unit cell can

be identified in each case by reference to the column ‘Lattice

vectors’. For example, (1,1,0)(1, 1,0)(0,0,2) implies a cell with

dimensions close to
ffiffiffi
2
p

ap �
ffiffiffi
2
p

ap � 2ap, where ap represents

the lattice parameter of the primitive cubic reference struc-

ture.

Rather than including the complete ISOTROPY list for

every single combination of �þ3 , Mþ2 , Rþ3 with Mþ3 and Rþ4 , a

subset has been selected to represent the structure types most

likely to develop in real materials. These have order-para-

meter components consistent with the pure JT distortions

referred to above. In coupling �þ3 with Mþ3 , for example,

structures with order parameter (a,0) for �þ3 are retained.

Structure types with a non-zero second component have been

omitted except where symmetry reduction due to tilting

permits a second component of the order parameter to be

non-zero. The latter have JT order-parameter components

(a,b), but the value of b is presumed to be small. In addition, it

was the practice of Howard & Stokes (1998, 2004, 2005) to

remove structures showing ‘in-phase’ (Mþ3 ) and ‘out-of-phase’

(Rþ4 ) tilts around the same axis, i.e. structures with corre-

sponding components of order parameters being both non-

zero. These have again been removed here, except when

coupling Mþ3 and Rþ4 with Rþ3 where it was found that

symmetry lowering due to the JT distortion permits a
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Table 1 (continued)

Space group
Mþ3
q1q2q3

Rþ4
q4q5q6 System Lattice vectors Origin

31 52 Pnna (a,0,0) (0,0,b) (c,0,0) a0b+c� (0,0,2)(0,2,0)(�22,0,0) (0,0,0)
32 62 Pnma (0,a,0) (0,0,b) (c,0,0) a0b+c� (0,2,0)(�22,0,0)(0,0,2) (0,0,0)
= 13 62 Pnma (0,a,0) (0,b,0) (c,0,c) a+b�b� (0,1,1)(2,0,0)(0,1,�11) (0,0,0)
= 14 11 P21/m (0,a,0) (0,b,0) (c,0,d) a+b�c� (0,�11,1)(2,0,0)(0,1,1) (0,0,0)
33 86 P42/n (a,0,0) (0,b,b) (c,0,0) a+a+c� (0,2,0)(�22,0,0)(0,0,2) (0,0,0)

Rþ3
q4JTq5JT

34 140 I4/mcm (0,a)††† (0,0,0) (0,0,0) a0a0c0 (1,1,0)(�11,1,0)(0,0,2) (1
2;

1
2;0)

(35) 139 I4/mmm (a,0) (0,0,0) (0,0,0) a0a0c0 (1,1,0)(�11,1,0)(0,0,2) (0,0,0)
(36) 69 Fmmm (a,b) (0,0,0) (0,0,0) a0b0c0 (2,0,0)(0,2,0)(0,0,2) (0,0,0)

37 135 P42/mbc (0,a) (b,0,0) (0,0,0) a0a0c+ (1,1,0)(�11,1,0)(0,0,2) (0,0,0)
38 126 P4/nnc (a

ffiffiffi
3
p

/2,�a/2)‡‡‡ (b,0,b) (0,0,0) a0b+b+ (0,2,0)(0,0,2)(2,0,0) (0,1,0)
39 48 Pnnn (a,b) (c,d,e) (0,0,0) a+b+c+ (2,0,0)(0,2,0)(0,0,2) (0,0,0)

40 72 Ibam (0,a) (0,0,0) (b,0,0) a0a0c� (1,1,0)(�11,1,0)(0,0,2) (0,0,0)
= 10 15 C2/c (a

ffiffiffi
3
p

/2,�a/2) (0,0,0) (b,c,b) a�b�b� (2,�11,�11)(0,1,�11)(0,1,1) (1
2,

1
2,0)

= 11 2 P�11 (b,a) (0,0,0) (c,d,e) a�b�c� (0,1,1)(1,0,1)(1,1,0) (0,0,0)

41 15 C2/c (�a/2,a
ffiffiffi
3
p

/2)
+(b

ffiffiffi
3
p

/2,b/2)§§§
(0,0,c) (d,0,0) a0b+c� (�22,0,0)(0,0,2)(0,2,0) (1

2,0,12)

42 14 P21/c (a
ffiffiffi
3
p

/2,�a/2) (0,b,0) (c,d,c) a�b�b� (2,0,0)(0,1,�11)(0,1,1) (0,0,0)
14 P 1 1 21/a (a

ffiffiffi
3
p

/2,�a/2) (0,b,0) (c,d,c) a�b�b� (0,1,1)(2,0,0)(0,1,�11) (0,0,0)
43 2 P�11 (�a/2,�a

ffiffiffi
3
p

/2)
+(b

ffiffiffi
3
p

/2,�b/2)
(0,c,0) (d,e,f) a�b�c� (0,�11,1)(2,0,0)(0,1,1) (0,0,0)

44 68 Ccca (0,a) (0,b,b) (c,0,0,) a+a+c� (2,2,0)(�22,2,0)(0,0,2) (0,0,0)

† The JT distortion here acts to make the z direction unique. ‡ Here and subsequently we use different literals for
different axes distinguished by the Jahn–Teller distortion, even when these are not distinguished by tilting. § This JT
distortion would make the three axes unequal. } This is JT acting along the x direction of the starting cell. †† This is
JT acting along the y direction of the starting cell. ‡‡ The JT acts to distort octahedra in the plane perpendicular to z of
the starting cell. §§ The JT acts to distort octahedra in the plane perpendicular to x of the starting cell. }} The
addition of prime to b signifies that this component is a secondary order parameter. The Glazer tilt scheme is given for b0

= 0. ††† The JT acts to distort octahedra in the plane perpendicular to z of the starting cell. ‡‡‡ The JT acts to distort
octahedra in the plane perpendicular to x of the starting cell. §§§ This term acts to distort octahedra in the plane
perpendicular to y of the starting cell.

1 The reader unfamiliar with this approach may wish to consult the review
article by Howard & Stokes (2005). There is, however, an error in this article in
that Table 3 shows the irrep associated with the distortion in the I4/mcm
structure of KCuF3 to be Rþ4 when it should be Rþ3 .



component of out-of-phase tilting (not necessarily large)

around an axis of formerly pure ‘in-phase’ tilts.

Each structure-type listed in Table 1 has been assigned a

reference or sequence number. Structures #1–15 are the tilted

structures obtained in the absence of JT distortion, as have

been tabulated previously (Howard & Stokes, 1998). The

three pure JT structures are highlighted in bold. In a number

of instances, the JT distortion can be accommodated in a tilted

structure without changing either the unit cell or the space-

group symmetry. These are identified in the reference column

by the sequence number of the pertinent tilted structure.

Finally, as detailed in the footnotes, some alternative combi-

nations of order parameters are shown for different directions

of the unique JT axis. As an example of this, the order para-

meter for irrep �þ3 appears as both (a,0) and � a
2 ;�

a
ffiffi
3
p

2

� �
according to whether the unique axis of the Jahn–Teller

distortion is along Z or X of the reference system used in

ISOTROPY. The need to invoke different unique axes for the

JT distortion arises because the orientation of tilts from the

pure tilting systems (#1–15) have been preserved in the mixed

Jahn–Teller + tilt structures.

For four of the space groups in the Mþ2 set, the lowering of

symmetry driven by combining Mþ2 and Rþ4 distortions permits

the Mþ3 components to be non-zero without further symmetry

reduction. The Mþ3 components can be understood as being

secondary order parameters in that they are simply a conse-

quence of the symmetry already being lowered, and are

indicated by b0 rather than b in Table 1. Similarly, P21/c

obtained by Mþ2 and Rþ4 as the driving order parameters can

have non-zero values of secondary order parameter compo-

nents belonging to Rþ3 , while P21/c driven by Rþ3 , Mþ3 and Rþ4
can have secondary Mþ2 components. Formally, the structures

in the space group P21/c listed as numbers 29 and 42 in Table 1

are the same, but the former is expected to have the secondary

Rþ3 component ’ 0 and the latter is expected to have the

secondary Mþ2 component ’ 0. The same argument applies to

structures in the space group P�11 listed as numbers 30 and 43. It

should also be noted that if the secondary order parameter is

zero at high temperatures but adopts non-zero values below

some critical temperature it becomes, in effect, the driving

order parameter for an isosymmetric phase transition.

Table 2 contains a subset of the results listed in Table 1. It

provides a summary of possible space groups for structures in

which each of the tetragonal P4/mmm (�þ3 ), P4/mbm (Mþ2 )

and I4/mcm (Rþ3 ) JT ordering schemes is imposed on each of

the 15 tilted structures. ‘No change’ signifies that there need be

no change in space group (or unit cell) when the Jahn–Teller

distortions are added. In other words, the orbital ordering

scheme is compatible with the tilt system and can develop

without changing the geometry of the tilting. This does not

preclude the possibility that the Jahn–Teller distortion might

drive the structure to another tilting system of lower

symmetry. ‘None’ signifies that there are no structures which

can combine orbital ordering with the specified tilting. This

applies to all the trigonal structures and is a consequence of

the incompatibility of a threefold axis with tetragonal or

orthorhombic distortions of individual octahedra. Again,

however, there remains the possibility that a Jahn–Teller

distortion could develop which would drive the structure to

adopt a tilt system of lower symmetry. In the remaining

combinations, development of JT distortions in a perovskite

with tilted octahedra would cause a reduction in symmetry. In

a few cases, more than one structure is possible in a given tilt

system, depending on the orientation of the unique Jahn–

Teller direction relative to the axes of tilt.

3. Permitted strain/order-parameter relationships

Although the driving mechanism for Jahn–Teller transitions is

an instability of the electronic structure of individual cations,

phase transitions become manifest macroscopically through

the preferred alignments of distorted coordination octahedra.

The geometrical meaning of the order-parameter components,

qi, can conveniently be considered in relation to the usual two

limiting cases. In the displacive limit, individual octahedra

would all deform through a range of dimensions in proportion

to the splitting of d-orbitals. The magnitude of qi would be

related to the amount of distortion from perfect octahedral

geometry. In the order/disorder limit, octahedra are distorted

by a fixed amount but are randomly oriented in the high-
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Table 2
A summary of space-group changes which can occur when three different
JT ordering schemes are superimposed on 15 separate tilt systems.

‘No change’ signifies that Jahn–Teller ordering can occur in a given tilted
structure without any symmetry reduction. ‘None’ signifies that there are no
structures with both JT order and the given tilt system. Isosymmetric
transitions must be first order in character and the Pm3m $ P4/mmm
transition is first order due to the existence of third-order invariants in the
order parameter. The remaining transitions can be second order.

Tilt system
(Glazer notation) No JT �þ3 Mþ2 Rþ3

a0a0a0 Pm�33m P4/mmm P4/mbm I4/mcm

a0a0c+ P4/mbm No change Pbam P42/mbc
Imma

a0b+b+ I4/mmm No change I4/m P4/nnc
a+a+a+ Im�33 None None None
a+b+c+ Immm No change C2/m Pnnn

a0a0c� I4/mcm No change P42/mnc Ibam
Cmcm

a0b–b� Imma No change Pnma None
a–a–a� R�33c None None None
a0b–c� C2/m No change C2/c None

P21/m
a�b�b� C2/c No change P21/c No change
a�b�c� P�11 No change P�11 No change

a0b+c� Cmcm No change Pnna C2/c
Pnma

a+b�b� Pnma No change No change P21/c†
a+b�c� P21/m No change No change P�11†
a+a+c� P42/nmc No change P42/n Ccca

† In these structures there is, along with the in-phase (+) tilt around the X axis, a
component of out-of-phase (�) tilt which can be and presumably is non-zero.



temperature form and become ordered in the low-tempera-

ture form. The magnitude of qi would be given by the

proportion of octahedra in their ordered configuration. Real

behaviour might be intermediate between these but there will

always be a clear relationship between the magnitude of qi and

changes in lattice parameters, as expressed in terms of spon-

taneous strains, ek. Symmetry rules determine the nature of

coupling between qi and ek, so that the strains can be used to

follow the evolution of individual order-parameter compo-

nents explicitly. An orthorhombic strain is commonly used to

describe lattice distortions of Jahn–Teller systems (e.g. Alonso

et al., 2000; Horsch et al., 2008; Martı́nez-Lope et al., 2008), but

this has not previously been expressed in terms of any specific

combination of order-parameter components.

From Carpenter et al. (2001) and Carpenter (2007), the

spontaneous strains accompanying Mþ3 and Rþ4 tilting transi-

tions are

ea ¼ e1 þ e2 þ e3

¼ �
�1 q2

1 þ q2
2 þ q2

3

� �
þ �2 q2

4 þ q2
5 þ q2

6

� �
1
3 Co

11 þ 2Co
12

� �
" #

ð1Þ

eoz ¼ e1 � e2 ¼ �
�3

ffiffiffi
3
p

q2
2 � q2

3ð Þ þ �4

ffiffiffi
3
p

q2
5 � q2

6

� �
1
2 Co

11 � Co
12

� �
" #

ð2Þ

etz ¼
1ffiffiffi
3
p 2e3 � e1 � e2ð Þ

¼ �
�3 2q2

1 � q2
2 � q2

3

� �
þ �4 2q2

4 � q2
5 � q2

6

� �
1
2 Co

11 � Co
12

� �
" #

ð3Þ

e4 ¼ �
�5q4q6

2�6 q2
1 þ q2

2 þ q2
3

� �
þ 2�7q2

2 þ Co
44

ð4Þ

e5 ¼ �
�5q4q5

2�6 q2
1 þ q2

2 þ q2
3

� �
þ 2�7q2

3 þ Co
44

ð5Þ

e6 ¼ �
�5q5q6

2�6 q2
1 þ q2

2 þ q2
3

� �
þ 2�7q2

1 þ Co
44

: ð6Þ

Equations (4)–(6) can be simplified by assuming

Co
44>> 2�6 q2

1 þ q2
2 þ q2

3

� �
þ 2�7q2

i

� �
, i = 1, 2 or 3, so that

e4 ¼ �
�5q4q6

Co
44

ð7Þ

e5 ¼ �
�5q4q5

Co
44

ð8Þ

e6 ¼ �
�5q5q6

Co
44

: ð9Þ

The order-parameter components q1–q3 are for Mþ3 and q4–q6

are for Rþ4 . Linear strains e1, e2 and e3 are parallel to reference

axes X, Y, Z, and the subscript z specifies the unique tetra-

gonal axis as being parallel to Z of the reference system. These

combinations lead to distinctive patterns of lattice distortions

according to which of the six order-parameter components are

non-zero.

The complete Landau expansion given by Carpenter et al.

(2001) for Mþ3 + Rþ4 tilting transitions could easily be extended

to include all components of the JT transitions, but the

resulting expansion for the most general cases would be rather

long. As a simplification, coupling of strains with JT order

parameters is considered separately for �þ3 , Mþ2 and Rþ3 as the

active representations. In JT + tilt systems there are then a few

further coupling terms to be considered.

Landau expansions for the active representations, �þ3 , Mþ2
and Rþ3 , are, respectively

G�3þ ¼
1

2
a�s coth

�s

T

� �
� coth

�s

Tc;JT

� �� �
q2

tz þ q2
oz

� �
þ

1

3
uqtz q2

tz � 3q2
oz

� �
þ

1

4
b q2

tz þ q2
oz

� �2

þ
1

3
vqtz q2

tz � 3q2
oz

� �
q2

tz þ q2
oz

� �
þ

1

6
c q2

tz þ q2
oz

� �3
þ

1

6
c0q2

tz q2
tz � 3q2

oz

� �2

þ �t�3þ qozeoz � qtzetzð Þ þ �a�3þea q2
tz þ q2

oz

� �
þ �e�3þ qtz 2e2

6 � e2
4 � e2

5

� �
�

ffiffiffi
3
p

qoz e2
4 � e2

5

� �� �
þ

1

4
Co

11 � Co
12ð Þ e2

oz þ e2
tz

� �
þ

1

6
Co

11 þ 2Co
12ð Þe2

a

þ
1

2
Co

44 e2
4 þ e2

5 þ e2
6

� �
ð10Þ

GM2þ ¼
1

2
a�s coth

�s

T

� �
� coth

�s

Tc;JT
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q2

1JT þ q2
2JT þ q2

3JT

� �
þ

1

4
b q2

1JT þ q2
2JT þ q2

3JT

� �2

þ
1

4
b0 q4

1JT þ q4
2JT þ q4

3JT

� �
þ

1

6
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6
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þ �aM2þea q2
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3JT

� �
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ffiffiffi
3
p

eoz q2
2JT � q2

3JT
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þ etz 2q2

1JT � q2
2JT � q2

3JT

� �h i
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2JT þ q2

3JT

� �
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5 þ e2

6

� �
þ �e2M2þ q2

1JTe2
6 þ q2

2JTe2
4 þ q2
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5

� �
þ

1
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þ

1
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research papers

Acta Cryst. (2009). B65, 134–146 Carpenter and Howard � Symmetry rules and strain/order-parameter relationships. I 139



GR3þ ¼
1

2
a�s coth

�s

T

� �
� coth

�s

Tc;JT
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q2

4JT þ q2
5JT
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þ

1

4
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6
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ffiffiffi
3
p
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1

4
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2
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The order parameter components for �þ3 are specified as qtz

and qoz, following Carpenter et al. (2005); q1JT, q2JT and q3JT

have been assigned to Mþ2 and q4JT, q5JT to Rþ3 . Terms in q are

included to sixth order, terms in e to second order, and

coupling terms to the lowest order permitted by symmetry.

The reference system from ISOTROPY is used throughout for

definition of the strains.

In systems without octahedral tilting, the (symmetry-

breaking) tetragonal shear strains scale with non-zero order-

parameter components as

etz�3þ ¼
�t�3þqtz

1
2 Co

11 � Co
12

� � ð13Þ

etzM2þ ¼
��tM2þ 2q2

1JT � q2
2JT � q2

3JT

� �
1
2 Co

11 � Co
12

� � ð14Þ

etzR3þ ¼
��tR3þ q2

4JT � q2
5JT

� �
1
2 Co

11 � Co
12

� � : ð15Þ

The corresponding orthorhombic strains are

eoz�3þ ¼
��t�3þqoz

1
2 Co

11 � Co
12

� � ð16Þ

eozM2þ ¼
�

ffiffiffi
3
p
�tM2þ q2

2JT � q2
3JT

� �
1
2 Co

11 � Co
12

� � ð17Þ

eozR3þ ¼
�2�tR3þq4JTq5JT

1
2 Co

11 � Co
12

� � : ð18Þ

Volume strains, ea, due to coupling with each set of order-

parameter components are

ea�3þ ¼
��a�3þ q2

tz þ q2
ozð Þ

1
3 Co

11 þ 2Co
12

� � ð19Þ

eaM2þ ¼
��aM2þ q2

1JT þ q2
2JT þ q2

3JT

� �
1
3 Co

11 þ 2Co
12

� � ð20Þ

eaR3þ ¼
��aR3þ q2

4JT þ q2
5JT

� �
1
3 Co

11 þ 2Co
12

� � : ð21Þ

It is also necessary to consider contributions to the excess

free energy of strain coupling terms which include a strain

component and a single order parameter from each of the tilt

and JT systems. According to ISOTROPY, there are no terms

of the form etzqJTqtilt or eozqJTqtilt. Similarly, there are no terms

of the form eiqJTqtilt, where i = 4, 5 or 6, if qJT is from Mþ2 and

qtilt is from Rþ4 or if qJT is from Rþ3 and qtilt is from Mþ3 . There

are terms which transform as �þ5 �Mþ2 �Mþ3 and �þ5 �Rþ3 �Rþ4 ,

however, and these are, respectively, �eM2þM3þ

ðe6q1JTq1 þ e4q2JTq2 þ e5q3JTq3Þ and �eR3þR4þðe6q5JTq4þffiffi
3
p

2 e4q4JTq5�
1
2 e4q5JTq5�

ffiffi
3
p

2 e5q4JTq6�
1
2 e5q5JTq6Þ. For the case

of �þ3 as the active Jahn–Teller representation, a check with

ISOTROPY revealed that there are no equivalent coupling

terms in ei (i = 4, 5, 6), qJT and qtilt if qtilt is from either Mþ3 or

Rþ4 (i.e. �þ5 ��þ3 �Mþ3 or �þ5 ��þ3 �Rþ4 ).

Making the same assumption as before in relation to

deriving (7)–(9) from (4)–(6), i.e. that coupling terms of the

form �e2q2 are negligibly small in comparison with 1
2 Coe2,

leads to the strain relations for Mþ2 (JT) + Mþ3 (tilting),

together with Rþ4 (tilting)

e4 ¼
��5q4q6 � �eM2þM3þq2JTq2

Co
44

ð22Þ

e5 ¼
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ð23Þ

e6 ¼
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Co
44

ð24Þ

and, for Rþ3 (JT) + Rþ4 (tilting)
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3
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: ð27Þ

Finally, and for completeness, it is necessary to add coupling

terms which determine the way in which the Jahn–Teller and

tilting processes might interact directly, rather than indirectly

through common strains. For systems with �þ3 JT + tilting,

these will contribute to the excess free energy as

�q�3þM3þ qtz 2q2
1 � q2
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For Mþ2 JT + tilting, the direct coupling terms in the excess free

energy are
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For Rþ3 JT + tilting the equivalent terms are
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When considering mixed JT + tilt systems, it is necessary to

use twin components of each with the correct orientation

relationships. The relevant unit-cell orientations, chosen to

maintain the orientations of tilt axes from the purely tilted

structures, are shown in Fig. 2 for the specific cases of Imma

and C2/m (�þ3 + Rþ4 ), Pnma (Mþ2 + Rþ4 + Mþ3 ) and the P21/a

setting of P21/c (Rþ3 + Rþ4 + Mþ3 ). These are the most imme-

diately pertinent settings in relation to known phases. Note

that in the Mþ2 + Rþ4 + Mþ3 (Pnma) structure the Mþ2 twin

component has order-parameter components (0, q2JT, 0). In

the absence of tilting the tetragonal axis of this twin compo-

nent (which is perpendicular to the planes of ordered octa-

hedra) would be aligned parallel to X. (q1JT, 0, 0) and (0, 0,

q3JT) represent twinned variants with tetragonal axes parallel

to Z and Y, respectively.

For the Rþ3 pure JT structure (I4/mcm), the order-parameter

components are (0, q5JT) and orientational ordering of the

octahedra occurs within the (001) plane. {As an aside, (q4JT, 0)

represents a different structure with I4/mmm symmetry, which

has the unique axes of Q3 octahedra all aligned parallel to

[001]. Octahedra in alternating (001) layers would have

different degrees of distortion, making this an unlikely JT

structure.} The relevant Rþ3 contribution to the P21/c structure

(P21/a setting) has JT order-parameter components of the

form a
ffiffi
3
p

2 ;� a
2

� �
. This corresponds to a twin variant of the

structure with q5JT 6¼ 0, q4JT = 0 in which the unique axis is

aligned parallel to X (Fig. 2).

For a tilt plus �þ3 JT structure with Imma or Pnma

symmetry, the JT components have the form � a
2 ;�

a
ffiffi
3
p

2

� �
.

These could also be expressed as qtx 6¼ 0, qox = 0 for a JT twin

variant with the tetragonal axis parallel to X. With respect to

strain orientations, it turns out to also be convenient to express

the �þ3 strains in terms of etx and eox where

etx ¼
1ffiffiffi
3
p 2e1 � e2 � e3ð Þ ¼ �

1

2
etz �

ffiffiffi
3
p

eoz

� �
ð31Þ

and

eox ¼ e2 � e3ð Þ ¼ �
1

2

ffiffiffi
3
p

etz þ eoz

� �
: ð32Þ

4. Phase transitions

There is no a priori reason why tilting transitions should occur

ahead of Jahn–Teller transitions, or vice versa, and sequences

of the type cubic! tilt! tilt + JTand cubic! JT! tilt + JT

can both occur. Table 2 summarizes the possibilities for tilting

followed by Jahn–Teller ordering. If there is no change in

symmetry, the JT transition is expected to be first order in

character, in line with the general expectation for isosym-

metric phase transitions (Christy, 1995). The Pm3m $

P4/mmm transition must be first order in character owing to

the existence of third-order invariants of the order parameter

in the excess free energy, but all the remaining transitions can

be second order. Figs. 3, 4 and 5 show hierarchies of symmetry

changes in which JT ordering (Mþ2 , Rþ3 and �þ3 , respectively)

precedes three separate phases of tilting. In these figures, the

unique tetragonal axis of the pure JT structure has been set to

be parallel to Z and the orientations of possible tilt axes

allowed to differ from those of the equivalent pure tilted

structures. Solid lines indicate transitions which are allowed by

symmetry to be second order in character. Broken lines show

transitions between related structures which are expected to

be first order. In combination, Table 2 and Figs. 3–5 allow
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Figure 2
Unit-cell orientations with respect to the orthogonal reference system
used to calculate strains in the case of structures with both Jahn–Teller
distortions and octahedral tilting, and space groups Imma, C2/m (�þ3 +
Rþ4 ), Pnma (Mþ2 + Rþ4 + Mþ3 ), P21/a setting of P21/c (Rþ3 + Rþ4 + Mþ3 ).



more extensive transformation pathways, such as cubic! tilt

! tilt + JT! additional tilt + JT, to be evaluated.

For Mþ2 and Rþ3 JT systems, coupling between a tilt order-

parameter component, qtilt, and a JT order-parameter

component, qJT, could either be direct or indirect via a

common strain. With the exception of the term

�qM2þM3þR4þ(q1JTq1q5q6 + q2JTq2q4q6 + q3JTq3q4q5), the

coupling is effectively all of the form �q2
tiltq

2
JT. Salje &

Devarajan (1986) have investi-

gated biquadratic coupling

between two order parameters

systematically and their results

provide a qualitative picture of

general possibilities for structural

sequences with falling tempera-

ture. For compatible combina-

tions of tilting and JT ordering,

and second-order transitions, the

tilting may precede or follow the

ordering, as shown in Figs. 6(a)

and (b), respectively. It is not

necessarily the case that the

coupling is favourable, however,

and in the event that one process

induces macroscopic strains which

are opposite in sign to those

associated with the other, the

structure could revert back to a

purely tilted or JT ordered form

(Figs. 6c and d). In addition to the

strength of coupling, the differ-

ence in critical temperatures

between the tilt and JT instabilities plays a role in determining

the extent to which the evolution of one order parameter

modifies the evolution of the other. In general, the strongest

influence is seen when the critical temperatures are similar. If

they are widely separated, one order parameter will display

only small deviations through the second transition (dashed

lines in Figs. 6a and b). There can also be circumstances in

which a mixed tilt + JT structure does not have any field of

stability, so that the pure tilted structure transforms to the

pure JT structure or vice versa (Figs. 6e and f). Coupling

determined by �qM2þM3þR4þ(q1JTq1q5q6 + q2JTq2q4q6 +
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Figure 4
Symmetry hierarchy for tilting transitions in an ABX3 perovskite with
Jahn–Teller ordering corresponding to irrep Rþ3 and with the orientation
of the JT ordered structure maintained. Solid lines indicate group–
subgroup relationships for which transitions are allowed to be second
order.

Figure 3
Symmetry hierarchy for tilting transitions in an ABX3 perovskite with Jahn–Teller ordering corresponding
to irrep Mþ2 and with the orientation of the JT ordered structure maintained. Solid lines indicate group–
subgroup relationships for which transitions are allowed to be second order. Dashed lines indicate group–
subgroup relationships for which transitions must be first order. Isosymmetric transitions are also shown as
being first order.

Figure 5
Symmetry hierarchy for tilting transitions in an ABX3 perovskite with
Jahn–Teller ordering corresponding to irrep �þ3 and with the orientation
of the JT ordered structure maintained. Solid lines indicate group–
subgroup relationships for which transitions are allowed to be second
order.



q3JTq3q4q5) could result in qJT acting as a linear field for tilting,

or in the tilting providing an effective field for JT ordering.

Coupling between �þ3 orbital ordering and the tilt systems is

slightly different in that linear-quadratic coupling terms of the

form �qJTq2
tilt are permitted by symmetry (Carpenter et al.,

2005). Salje & Devarajan (1986) did not consider this case, but

the same general principle must apply, namely that different

sequences of phase transitions can occur, depending largely on

the critical temperature for each of the two instabilities and

the strength of coupling between them. As explained by

Carpenter et al. (2005) for the case of PrAlO3, one conse-

quence of the linear-quadratic coupling is that the JT ordering

can act as an applied field for the tilting, and vice versa.

In principle it is also possible to have mixed structures

containing some degree of both Mþ2 and Rþ3 JT order. These

have been derived from ISOTROPY (in the absence of tilting)

and are listed in Table 3. They are also shown as a symmetry

hierarchy in Fig. 7. The simplest mixed structure would have

P4/mbm symmetry, and might occur, for example, if there was

a crossover in stability between Mþ2 and Rþ3 structures as a

function of temperature, pressure or composition. Coupling

between the two different sets of JT order-parameter

components would again be biquadratic, and the various

sequences shown in Fig. 6 could all apply.

4.1. Structures in which tilting transitions occur prior to
cooperative Jahn–Teller ordering

For most Jahn–Teller ions in perovskites, the energy

changes associated with cooperative distortions are smaller

than are associated with tilting, so that the tilting occurs at

higher temperatures than the ordering. Thus, RVO3 perov-

skites, where R = Yb, Ho, Y, Tb, . . . , typically have the space

group Pnma (Mþ3 + Rþ4 ) at room temperature, with the

symmetry reduction from cubic being due to octahedral tilting

alone (Miyasaka et al., 2003; Sage et al., 2007; Martı́nez-Lope et

al., 2008). At lower temperatures, they undergo a Jahn–Teller
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Table 3
Possible space groups for structures with combinations of Jahn–Teller
ordering related to irreps Mþ2 + Rþ3 .

Space group
Mþ2
q1JTq2JTq3JT

Rþ3
q4JTq5JT Lattice vectors Origin

127 P4/mbm (a,0,0) (0,b) (1,1,0)(�11,1,0)(0,0,2) (1
2,

1
2,0)

131 P42/mmc (0,a,a) (0,b) (2,0,0)(0,2,0)(0,0,2) (0,0,0)
136 P42/mnm (a,0,0) (b,0) (1,1,0)(�11,1,0)(0,0,2) (0,0,0)
123 P4/mmm (0,a,a) (b,0) (2,0,0)(0,2,0)(0,0,2) (1,0,0)
65 Cmmm (a,0,0) (b,c) (2,0,0)(0,2,0)(0,0,2) (0,0,0)
47 Pmmm (a,b,c) (d,e) (2,0,0)(0,2,0)(0,0,2) (0,0,0)

Figure 6
A selection of possible solutions from Salje & Devarajan (1986) for
biquadratically coupled order parameters, �q2

tiltq
2
JT, where qtilt represents

tilting and qJT represents JT order. In (a), (c) and (e) the tilting instability
occurs at a higher temperature than the JT instability. The reverse applies
in (b), (d) and (f). The dashed lines in (a) and (b) indicate the form of
order-parameter variations expected when the critical temperatures for
the JT ordering and tilting are widely separated.

Figure 7
Symmetry hierarchy for ‘pure’ (i.e. without octahedral tilting) Jahn–Teller
ordering transitions associated with combinations of irreps Mþ2 and Rþ3 in
an ABX3 perovskite. Solid lines indicate group–subgroup relationships
for which transitions are allowed to be second order. Dashed lines
indicate group–subgroup relationships for which transitions must be first
order. Non-zero order-parameter components for each of the possible
space groups are given in brackets.



orbital ordering transition, giving the symmetry change Pnma

! P21/c (Rþ3 + Mþ3 + Rþ4 ). Different space groups have been

used to describe the monoclinic structure (e.g. Blake et al.,

2001, 2002; Bordet et al., 1993; Muñoz et al., 2003a,b, 2004a,b;

Ren et al., 2003; Reehuis et al., 2006, Sage et al., 2007), but the

present symmetry analysis confirms P21/c (2ap �
ffiffiffi
2
p

ap �ffiffiffi
2
p

ap) as being correct (Table 1). If it is desirable to keep the

same unit cell as the Pnma structure, the non-standard setting

is P21/a (
ffiffiffi
2
p

ap � 2ap �
ffiffiffi
2
p

ap) with � as the monoclinic angle

(Bordet et al., 1993). If the chosen orthorhombic setting is

Pbnm, the corresponding monoclinic setting is P21/b (
ffiffiffi
2
p

ap �ffiffiffi
2
p

ap � 2ap), with � as the monoclinic angle (Ren et al., 2003;

Reehuis et al., 2006; Sage et al., 2007; Martı́nez-Lope et al.,

2008). Some vanadate perovskites undergo a further transi-

tion, P21/c! Pnma (Mþ2 + Mþ3 + Rþ4 ), in which the ordering

scheme changes from Rþ3 (a-type) to Mþ2 (d-type). Summaries

of this overall behaviour are given by Miyasaka et al. (2003)

and Sage et al. (2007).

The Jahn–Teller ordered structure of LaMnO3 also

develops by octahedral tilting before undergoing Jahn–Teller

ordering (Norby et al., 1995; Rodrı́guez-Carvajal et al., 1998;

Mandal et al., 2001; Mandal & Ghosh, 2003; Sánchez et al.,

2003; Chatterji et al., 2003, 2004, 2006; Qiu et al., 2005). In this

case both the tilted structure (Mþ3 + Rþ4 ) and the Jahn–Teller

structure (Mþ2 + Mþ3 + Rþ4 ) have the space group Pnma, and

there is no symmetry change. A monoclinic phase with space

group P21/a and unit cell
ffiffiffi
2
p

ap � 2ap �
ffiffiffi
2
p

ap, � 6¼ 90�

reported by Huang et al. (1997) has the same lattice geometry

as the vanadate phase with Rþ3 Jahn–Teller distortions, but

could also develop from the Pnma structure by the addition of

a further Rþ4 tilt. Another monoclinic structure, stabilized by

low oxygen fugacity, has been reported by Mitchell et al.

(1996) as having the space group P21/a and the unit cell 2ap �

2ap � 2ap. This does not appear in Table 1, however, and

Rodrı́guez-Carvajal et al. (1998) showed that it can also be

described under the space group Pnma. Although they have

not been investigated extensively, the behaviour of RMnO3

phases would be expected to be broadly similar to that of

LaMnO3, at least in terms of the relative transition tempera-

tures for octahedral tilting and Jahn–Teller ordering. At room

temperature they have Pnma symmetry (Alonso et al., 2000;

Zhou & Goodenough, 2006; Tachibana et al., 2007).

Perovskites in which the pattern of Jahn–Teller distortions

conforms to �þ3 as the active representation are relatively rare

in comparison with those for which the active representation is

Mþ2 or Rþ3 . A prominent example is PrAlO3 (Burbank, 1970;

Kjems et al., 1973; Birgeneau et al., 1974; Cohen et al., 1974;

Sturge et al., 1975; Lyons et al., 1975; Harley et al., 1973; Fujii et

al., 1999; Carpenter et al., 2005; Watanabe et al., 2006). The

Jahn–Teller cation is on the crystallographic A site rather than

the B site but, from a symmetry perspective, this difference is

not important and the symmetry rules for coupling still apply.

Recent powder neutron-diffraction studies suggest that the

full transition sequence in PrAlO3 is Pm3m$ R3c$ Imma

$ C2/m (Moussa et al., 2001; Howard et al., 2000; Carpenter et

al., 2005). The R3c structure belongs to Rþ4 (pure tilt), while

both the Imma and C2/m structures belong to �þ3 + Rþ4 . The

tendency for this structure is to evolve towards I4/mcm (also

�þ3 + Rþ4 ) at the lowest temperatures, although tetragonal

lattice geometry is not quite achieved (Carpenter et al., 2005).

4.2. Structures in which Jahn–Teller transitions occur prior to
octahedral tilting

Perovskites containing Cu2+ or Cr2+ on the octahedral site

display cooperative Jahn–Teller distortions to the highest

temperatures and are therefore the most likely to show

octahedral tilting transitions in an already distorted structure.

KCuF3 can be grown with I4/mcm (Rþ3 ) or P4/mbm (Mþ2 )

Jahn–Teller structures, but the large A-site cation inhibits

octahedral tilting. RbCuF3 can be crystallized with the I4/mcm

structure, which is also maintained to at least room tempera-

ture (Kaiser et al., 1990). On the other hand, NaCuF3 has both

JT distortions (Rþ3 ) and additional displacements at room

temperature which Kaiser et al. (1990) referred to as deriving

from the GdFeO3 structure (Pnma, with Mþ3 and Rþ4 tilting).

They proposed a triclinic space group, P1. From Tables 1 and

2, it is apparent that P1 is a possibility in terms of the group-

theoretical analysis presented here, but so is P21/c. Whichever

is the case, there may be a hierarchy of displacive transitions

worthy of investigation at high temperatures, with the Jahn–

Teller ordering scheme remaining essentially unchanged.

Evidence for a hierarchy of transitions has been found in

KCrF3 (Margadonna & Karotsis, 2006). The parent Jahn–

Teller structure again has I4/mcm (Rþ3 ) symmetry, and this

disorders to the Pm3m structure via a strongly first-order

transition at � 973 K (Margadonna & Karotsis, 2006, 2007).

On cooling, the pure Jahn–Teller structure undergoes a tilting

transition between 250 and 200 K to a structure which

Margadonna & Karotsis (2006) assigned to the space group

I2/m and unit cell
ffiffiffi
2
p

ap �
ffiffiffi
2
p

ap � 2ap, � 6¼ 90�. This is a

different choice of unit cell for the C2/m structure with unit

cell 2ap � 2ap �
ffiffiffi
2
p

ap, � 6¼ 90�, which appears in Table 1. It

does not appear in the list of possible structures with Rþ3 JT

order, however. Either the ordering scheme changes with the

tilting or the space group is incorrectly determined. An

alternative monoclinic structure with Rþ3 order and
ffiffiffi
2
p

ap �ffiffiffi
2
p

ap � 2ap unit cell might be the I2/a setting of C2/c. Below

30 K there is another apparently first-order transition to a

structure which Margadonna & Karotsis again assigned to I2/

m. From the perspective of the group-theoretical analysis,

there are several possibilities, but a sequence Pm3m !

I4/mcm (Rþ3 only)! C2/c (Rþ3 + Rþ4 )! C2/c or P21/c (Rþ3 +

Mþ3 + Rþ4 ) would be worth considering in any reanalysis of

diffraction data for KCrF3.

A rare example of a �þ3 Jahn–Teller system without octa-

hedral tilting appears to be La0.5Ba0.5CoO3 (Fauth et al., 2001;

Nakajima et al., 2005). The form with a disordered distribution

of La and Ba on the crystallographic A sites undergoes a

Pm3m $ P4/mmm transition which has been ascribed to

cooperative Jahn–Teller distortions of the CoO6 octahedra,

favoured by at least some of the Co3+ and Co4+ ions having

intermediate spin states (Fauth et al., 2001; Nakajima et al.,

2005).

research papers

144 Carpenter and Howard � Symmetry rules and strain/order-parameter relationships. I Acta Cryst. (2009). B65, 134–146



5. Cation ordering

Ordering of cations, e.g. distinct cations on the A sites of

LaBaCo2O6 (Nakajima et al., 2005; Kundu et al., 2007;

Rautama et al., 2008) and on the B sites of Ba2CuWO6

(Iwanaga et al., 1999) or Mn with different charge on the B

sites of NdSrMn2O6 (Woodward et al., 1999), provides an

additional structural variable which will influence both Jahn–

Teller distortions and octahedral tilting, with knock-on

consequences for electrical and magnetic properties. Possible

B-site ordered structures and the effect of cation ordering on

cooperative JT distortion schemes have been discussed in

detail by Lufaso & Woodward (2004), who described three

distinct ordering arrangements. From the perspective adopted

in the present study, the addition of such ordering can be

described by the introduction of a further order parameter.

Ordering on the basis of the rocksalt structure changes the

space-group symmetry from Pm3m to Fm3m, with unit cell

2ap � 2ap � 2ap. In this case the order parameter belongs to

Rþ1 (Howard et al., 2003). An alternative ordering scheme has

the different cations alternating in layers which, in the absence

of tilting or JT distortions, would give P4/mmm symmetry and

unit cell ap � ap � 2ap. In this case the active representation is

X�3 (Howard & Zhang, 2004a,b). A third scheme has B-site

cations ordered in alternating chains such that, in the absence

of Jahn–Teller distortions and octahedral tilting, the space

group would become P4/mmm with a
ffiffiffi
2
p

ap �
ffiffiffi
2
p

ap � ap unit

cell. In this case the active representation is Mþ1 . Different

combinations of order parameters belonging to these repre-

sentations with order parameters for cooperative Jahn–Teller

distortions and octahedral tilting lead to three further hier-

archies of structures analogous to those shown in Table 1. The

hierarchy of tilted structures in a starting material with the

ap � ap � 2ap, P4/mmm ordering scheme has already been

determined by Howard & Zhang (2004a,b). The remaining

two will be presented elsewhere.

6. Conclusion

The new symmetry hierarchies presented here for different

combinations of octahedral tilting and cooperative Jahn–

Teller ordering provide a template against which proposed

structure types for complex perovskites containing Jahn–

Teller ions can be tested. A comprehensive survey of all

reported structures has not been attempted but it appears that,

from even a brief review of selected monoclinic structures,

some appear in Table 1 while others do not. It is anticipated

that new variants will be discovered as the range of multi-

component solid solutions is extended in the search for

materials with better or different electronic properties. More

importantly, perhaps, is the recognition that coupling

processes in these materials can be determined by strain

relaxations in exactly the same manner as in other ferroelastic

perovskites. Expressions for the formal strain/order-para-

meter relationships will allow the use of symmetry-adapted

strains, from high-resolution lattice-parameter data alone, to

investigate the strength of coupling and the dependence of

each order parameter on temperature, pressure and compo-

sition.
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Muñoz, A., Alonso, J. A., Casáis, M. T., Martı́nez-Lope, M. J.,
Martı́nez, J. L. & Fernández-Dı́az, M. T. (2003b). Phys. Rev. B, 68,
144429.
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